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ABSTRACT
Extracting causality from scientific literature is crucial for many
knowledge-driven downstream tasks. This paper proposes a novel
causality extraction framework for scientific literature, 2SCE-4SL(2-
Stage Causality Extraction for Scientific Literature). In this work,
the process of causality extraction is divided into two stages: (1)
In the first stage, terms and causal trigger words are parsed from
causal sentences and form noisy causal triplets. (2) In the second
stage, we design a Denoising AutoEncoder based on Transformer
architecture to represent the causal sentences, which is used to
learn the causal dependency and contextual information of sen-
tences through causal trigger word tagging and noise elimination,
as well as inject domain-specific knowledge. Finally, combining
the causality structure of stage 1 and the causality representation
model of stage 2, the true causal pairs are identified from the noisy
causal triplets. We selected open access scientific literature dataset
for experiments, and compared the effects of different disciplines,
training data volume, document length, whether causality repre-
sentation on results, and analyzed the reasons for such differences.
The results of this study indicate that the average precision of 2SCE-
4SL reaches 0.8146 and the average F1 is 0.8308, among which the
full-text performance is the best and the average precision reaches
0.9420. We also verify the effectiveness of the causality representa-
tion in stage-2, two tasks demonstrate the architecture can capture
the causal dependency of sentences, showing good performance. In
summary, detailed contrast experiments and ablation experiments
indicate that the 2SCE-4SL only needs a small amount of annotated
data to have better performance and good domain adaptability.

CCS CONCEPTS
• Computing methodologies → Information extraction; Learning
latent representations; • Applied computing → Digital libraries
and archives; •Human-centered computing→ Collaborative and
social computing systems and tools.
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1 INTRODUCTION
Scientific literature is the main form of expressing innovative ideas.
Nowadays, the growing number of academic papers provides rich
materials for scientific research[4]. Mining useful elements from
literature, such as entities, concepts, and terms, is of great signif-
icance for promoting scientific innovation. Therefore, Scientific
Literature Mining(SLM) has become a field of concern for many
interdisciplinary researchers[16, 33, 34].

Causality is the expression of the relationship between cause and
effect. The Nobel Prize in Economics in 2021 was awarded to David
Card, Joshua D. Angrist, and Guido W. Imbens for their outstanding
contributions in causal inference[40]. In recent years, more and
more articles about causality have emerged in computing and in-
formation science community, some research applies causality to
recommendation system[3] and opinion mining[23], some used in
the interpretability[28] and stability[25], some applied in causality
extraction[6, 24] and NLP augmentation[9]. It indicates that the
study of causality is an area worthy of further exploration.

Because causality can express higher-order logical relations be-
tween linguistics, discovering causality in scientific literature plays
an important role in academic recommendation, knowledge discov-
ery, intelligent reasoning, event abduction, causal inference, future
scenario generation and so on. For example, two sentences shown
in Fig. 1, "<colorectal cancer, leads to, colonic obstruction>,<prognostic
model, thus, predicting colorectal cancer>" can be obtained by extract-
ing causal pairs in the literature. These triplets can be constructed
as Knowledge Graphs about causality (e.g., Event Logic Graph [7]),
thereby improving the performance of automatic question answer-
ing systems. The triplets can also predict potential connections
between nodes by link prediction on the network, thereby facilitat-
ing knowledge discovery and future scenario generation.

To the best of our knowledge, although the existing research on
causality extraction has made good progress [39], most of them
revolve around commonsense knowledge, and most of the cor-
pus comes from general fields, such as news[31], web[14], social



media[18], etc. At the same time, many existing methods rely on
supervised extraction methods[24, 39], which is difficult to imple-
ment in large-scale unlabeled literature data. After reviewing the
existing methods, we think the difficulties of causality extraction
in scientific literature mainly include the following three aspects:

• Most of the current study focuses on commonsense causality,
there is few research on causality extraction for scientific
literature;

• Due to long length, intricate linguistic features and lack of
domain-specific knowledge in scientific literature, causality
extraction is still difficult;

• Due to lack of large quantities of readily available annotation
data, the performance of supervised causality extraction of
scientific literature needs to be improved.

To solve these problems, we propose a novel framework, 2SCE-
4SL(2-Stage Causality Extraction for Scientific Literature), to ex-
tract causality from scientific publications. The framework con-
sists of four parts:causality detection, causality collocation(stage 1),
causality representation(stage 2), causality classification. In the first
stage, causal trigger words and entities of sentences are identified
and form to noisy causal triplets. In the second stage, a Denoising
AutoEncoder based on Transformer architecture is designed for
learning causal dependency and contextual information through
causal trigger word tagging and noise elimination, while inject-
ing domain-specific knowledge. Finally, actual causal pairs were
identified from noise causal triplets in combination with causal
expression structure of stage 1 and causal sentences representation
model of stage 2.

The remainder of this paper is organized as follows: Section
2 introduces the related algorithms, datasets and applications of
causality extraction. Section 3 introduces the framework structure
and method design of 2SCE-4SL in detail. Section 4 introduces the
dataset and empirical research, which mainly includes two parts
of experiments: one is to verify the effectiveness of the causality
representation architecture from 2 tasks; the other is to conduct
comparative experiments and ablation experiments on 2SCE-4SL
from 4 aspects; Finally, in the section 5, we summarize the findings,
theoretical and practical implications, as well as discuss limitations
and future directions.

2 LITERATURE REVIEW
Causality Extraction (CE) is a sub-field of natural language process-
ing. Although there have been many studies on this field, most of
the algorithms and datasets of CE focus on commonsense, and their
application scenarios include future scenario generation, event pre-
diction, knowledge discovery, causal inference and so on. In this
section, we reviewed exist CE methods, datasets and application
scenarios, focusing on the research closely related to this work.

2.1 Causality extraction methods
Causality can be defined as the action of one event (cause) on
another event (effect), where the latter is considered to be the effect
of the former. Causality can be divided into explicit and implicit
causality[39]. Causality extraction in this paper is limited to explicit
causality. In natural language processing, CE can be implemented
in a variety of ways, that is, through a variety of algorithms to

"As one of the malignant tumors, colorectal
cancer leads to colonic obstruction, which
requires colonoscopy."
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"We applied a machine-learning algorithm to
develop a prognostic model thus predicting
colorectal cancer."
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Figure 1: Application scenarios of causality extraction for
scientific literature. Causal triplets can be extracted from
scientific papers to construct knowledge graph about causal-
ity (e.g., Event Logic Graph), which can facilitate academic
recommendation, future scenario generation, knowledge dis-
covery, intelligent reasoning, event abduction, causal infer-
ence and other downstream tasks.

automatically identify causality from text. According to different
types of tasks,CE can be divided into : rule-based and machine
learning-based.

CE methods based on manual rules (such as expert knowledge
and pattern matching) identify causal relationships in texts by
defining causal clues in advance or templates expressing causal
structures[44]. Thismethod built a large knowledge base and achieved
good performance in CE. [5] proposed causal relationship extrac-
tion using cue phrase and word pairing probability. [21] proposed a
method tomine the causal relationship of biomedical literature texts,
they constructed two schemes: lexic-based causal term strength
recognition, frequency-based causal strength and direction recogni-
tion. [1] used word vector mapping to extract causal relationships
from literature. They used four types of verbs as candidates to form
CE rules, and the results of causal extraction in Alzheimer’s disease
showed effectiveness. [12] developed COATIS for searching causal
links in texts; [19] used pattern matching to identify causality ex-
plicitly expressed in a single sentence. In addition, dependency
parsing and syntax tree parsing can effectively identify causal re-
lationships in text. [31] proposed that the causal sentence pattern
template < Pattern, Constraint, Priority> was constructed by rule
constraint and syntactic parsing. This method extracted headlines
of news articles in 150 years, the recall rate is 10% and the Precision
is 70%.

Although the CE method of rule-based has high accuracy, the
significant disadvantage is that it relies on external rules, which
requires a lot of manpower and time, and it is difficult to achieve
multi-scenario generalization.

CE method based on machine learning makes up for the short-
age of manual, with the deepening of neural network and deep
learning greatly improve efficiency. CE methods based on machine
learning can be divided into three types: text classification, relation
extraction and sequence labeling. (1) Text classification method
refers to classifying sentences according to whether the text con-
tains causality or not[15, 30]. This method does not need to extract
entities or events, but only needs to determine whether the text
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contains causality. It is suitable for those causal data that are diffi-
cult to extract events or entities from sentences. For example, [18]
proposed a method based on text classification to detect causality
from tweets. (2) Relationship extraction method is to judge whether
the causal pair given in the text has a causal relationship, which
is applicable to the data that is easy to identify the causal entity.
This method is currently popular, and there are many available
models, such as causality detection based on Bayesian algorithm
[43], causality recognition driven by background knowledge[20],
knowledy-driven CNN[22], etc. [37] proposed the extraction of time
relationship and causality based on event network. They proposed
an unsupervised event network representation structure, generated
the causal relationship of triples, and then constructed a network
to connect the relationship of events. (3) Sequence labeling method
refers to mark the causal relationship label of each word in the text
and then train the model to carry out generative extraction. These
methods are basically end2end pipelines without too much manual
intervention. [24] proposed a CE algorithm based on self-Attentive
BilstM-CRF, which can achieve a high accuracy. [6] proposed a
linguistically opposed approach to inform Bi-LSTM, which can also
achieve good results.

On the one hand, although machine learning-based methods are
efficient, they require a large amount of annotation data. On the
other hand, although there are some standard datasets for CE, such
as SemEval[32], Altlex[15], CEC[10], there are very few datasets
about CE in scientific literature. It is urgent to establish perfect
evaluation and datasets.

2.2 Application of causality extraction on
scientific research

Application of CE in scientific research is mainly to promote knowl-
edge discovery, academic recommendation, future scenario genera-
tion, event abduction and causal inference.

Extracting causal structure of triplets cloud facilitates discovery
of new knowledge. [42] proposed CausalTriad, a framework for
causal relationship discovery and hypothesis generation based on
medical text data. In order to model the rules of causality transfer
in medical texts, they divided the network composed of candidate
pairs of causality into a large number of triadic structures, and then
used the connection of text information and structural knowledge
to mine medical causality. The experiment showd that CausalTraid
is very efficient in discovering causality between sentences. Mean-
while, their team also proposed a fact-condition joint extraction
pipeline[17] for scientific literature to identify scientific observa-
tions and research assumptions in scientific literature. In previous
work, we conducted a preliminary study on causal discovery and
knowledge linkage in the biomedicine[41]. We constructed causal
knowledge network by extracting the causal triplets in the scientific
literature, so as to analysis of scientific knowledge community and
the prediction of potential medical knowledge.

In addition, the discovery of causal relationships in scientific
research is beneficial to future scene generation as well as scien-
tific event detection and prediction. [8] proposed a pretraining
language model, EGE -RoBERTa, based on variational autoencoder
to enhance the knowledge of the problem atlas, which utilizes an

additional implicit variable to capture the necessary problem at-
las knowledge. Experimental results showed that this model can
improve the performance of abductive reasoning effectively com-
pared with baseline method. [23] proposed to discover the causal
background from political tweets and reveal the context of political
opinions and news reports. They integrated OpenIE, open knowl-
edge repository and deep neural network to extract meaningful
tweet clauses and analyzed causal correlation,which show good
results.

More importantly, with the development of causal inference in
the field of artificial intelligence, the deep integration of causality
and NLP can promote the interpretability and stability of scientific
research. [9] and other 13 scholars reviewed the current direction
of the combination of causality and NLP. One is that NLP integrates
causal inference, and the other is that causal inference enhances
NLP. In addition, the excavation of causal relationships in scientific
literature plays an important role in promoting the understanding of
academic activities. For example, [11] explored what makes science
paper acceptable for publication, and they provided a method for
detecting the confounding effects of scientific literature in order to
generate causal explanations for the dynamic activities of academic
research in a scientific collaboration model.

3 METHODOLOGY
3.1 Overview
Given literature set D,D = {𝑑1, 𝑑2, 𝑑3, ..., 𝑑𝑖 | (1 ≤ 𝑖 ≤ 𝑁 )}, the goal
of this paper is to identify triplets (𝑐, 𝑣, 𝑒) that express explicit
causality, with 𝑐 representing cause, 𝑒 representing effect, and 𝑣 rep-
resenting causal verb. We will solve this problem in a classification
framework.

The framework of 2SCE-SL is shown in Fig. 2, which consists
of four parts: Causality Detection (Fig. 2. A), Causality Colloca-
tion (Fig. 2. B1), Causality Representation (Fig. 2. B2) and Causal-
ity Classification (Fig. 2. C). In causality detection, detecting set
S expressing causality from D, S = {𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑛 |∃𝑠𝑛 ∈ D}. In
causality collocation(stage 1), parsing each causal sentence 𝑠𝑛 , col-
locating the terms and the causal trigger word to noisy causal
triplets C(∃(𝑐, 𝑣, 𝑒) ∈ C), then manually annotate a small amount
of data. In causality representation (stage 2), S is represented by
the AutoEncoder architecture to learn the causal dependency and
semantic structure of sentences, then output the causal representa-
tion model𝑴 . Finally, in the causality classification, combined with
the causal expression structure (𝑐, 𝑣, 𝑒) of stage 1 and the causal
sentence model𝑴 of stage 2, the true causal pairs will be identified
from the noisy causal triplets, which can be defined as follow:

𝑓 ((𝑐, 𝑣, 𝑒)) =
{
𝑦 = 1 , causality
𝑦 = 0 , not causality (1)

Given an arbitrary causal triplet (𝑐, 𝑣, 𝑒) ,if label is 1, indicating true
causality; otherwise false causality. Each section will described in
detail below.

3.2 Causality detection
As the premise of causality extraction, the purpose of causality
detection is to identify sentences that express explicit causality in
the literature. Taking sentences as a unit can not only retain the
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Figure 2: Framework of 2SCE-4SL. It consists of four parts:
Causality Detection(A), Causality Collocation(B1, stage 1),
Causality Representation(B2, stage 2), and Causality Classifi-
cation(C).

complete semantics to facilitate the feature representation of causal
structures, but also provides rich conditions for further fine-grained
parsing.

Here, we divide the causality detection of scientific literature
into three steps:

• Firstly, preprocess the literature corpus;
• Then, define trigger words that express causality;
• Finally, the sentences containing causal trigger words are
identified.

In the selection of causal trigger words, we referred to the previ-
ous work[18, 27, 38], defining 81 causal cues such as "lead to, result
in, because". Part of the causal trigger words are shown in table1.

3.3 Causality collocation
As the first stage of 2SCE-4SL, causality collocation aims to identify
candidate causal triplets from causal sentences, which is one of the
targets extracted in this paper. The method based on deep learning
requires a lot of annotated data, so we construct a large number of
causal pairs in the way of terms collocation, and then identify the
true causal pairs in the causality classification part, which can be
regarded as a part of few-shot learning.

We preliminarily define the structure of causality, which is rep-
resented by the triple form of (𝑐, 𝑣, 𝑒), where 𝑐 stands for cause,𝑒
stands for effect, and 𝑣 stands for causal trigger word. This triplet
structure of causality could facilitate direct application in many
downstream tasks such as Fig. 1. Firstly, the causal trigger word
𝑣𝑖 is identified from the causal sentence. Then, 𝑣𝑖 is used as the
boundary to identify the entities 𝑐𝑖 and 𝑒𝑖 on both sides. For any ∀𝑐𝑖
and 𝑒𝑖 (𝑐𝑖 ≠ 𝑒𝑖 ), ergodic combination is carried out and Cartesian
product is calculated to construct the triplets set C, which can be
expressed as follows:

C = {𝑐1, . . . , 𝑐𝑖 } × {𝑣𝑖 } × {𝑒1, . . . , 𝑒𝑖 }
= {(𝑐1, 𝑣𝑖 , 𝑒1) , (𝑐1, 𝑣𝑖 , 𝑒𝑖 ) , . . . | 𝑐𝑖 ≠ ei, ci&ei ∈ S}

(2)

As shown in Fig. 3, input a sentence "As one of the malignant tu-
mors, colorectal cancer leads to colonic obstruction, which requires
colonoscopy.", using ScispaCy [29] to perform dependency parsing,
and identify the concepts, terms or phrases. Taking the trigger word

As one of the malignant tumors, colorectal cancer leads to colonic obstruction which requires colonoscopy.
ADP NUM ADP NOUN NOUN VERB NOUN DET VERB NOUN

the malignant tumors, colorectal cancer colonic obstruction colonoscopy.leads to

<the malignant tumors, leads to, colonic obstruction>

<the malignant tumors, leads to, colonoscopy>

<colorectal cancer, leads to, colonic obstruction>

<colorectal cancer, leads to, colonoscopy>

Figure 3: Example of causality collocation. Input a sen-
tence,"As one of the malignant tumors, colorectal cancer leads
to colonic obstruction, which requires colonoscopy.", using Scis-
paCy to perform dependency parsing, and identify the con-
cepts, terms or phrases.Taking the trigger word "leads to" as
the boundary, causal triplets "<the malignant tumors, leads
to, colonic obstruction>, <colorectal cancer, leads to, colonic
obstruction>, <the malignant tumors, leads to, colonoscopy>,
<colorectal cancer, leads to, colonoscopy>" can be parsed from
sentence.

"leads to" as the boundary, causal triplets "<the malignant tumors,
leads to, colonic obstruction>, <colorectal cancer, leads to, colonic ob-
struction>, <the malignant tumors, leads to, colonoscopy>, <colorectal
cancer, leads to, colonoscopy>" can be parsed from sentence.

Obviously, these triplets contain lots of noise. "<colorectal cancer,
lead to, colonoscopy>", for example, does not express causality in
the paper. The goal of the following processes are to filter these
noisy triplets. We manually annotated part of the data as training
data to identify true causal pairs in classification section.

3.4 Causality representation
As the second stage of 2SCE-4SL, causality representation is a very
important component of this paper, which aims at characteristic rep-
resentation of causality sentences so as to learn causal dependency
inside sentences and contextual knowledge of specific domain.

A prominent feature of scientific literature that distinguishes it
from commonsense corpus is that it contains professional knowl-
edge. For example, Computer Science paper often contains profes-
sional concepts and terms. In addition, the expressions of causal
sentences also have specific linguistic features. The entities on the
same side of the triggering word 𝑣𝑖 are more continuous sequence
structures, while the entities on the other side of 𝑣𝑖 are not only
more discrete in continuity, but also farther apart in vector coor-
dinates. In order to accurately identify positive causal pairs from
noise, it is necessary to learn the causal dependency and semantic
information inside these sentences.

Here, we constructed an encoder-decoder architecture network
based on Transformer model[35]. Its composition is shown in Fig. 4,
which can be regarded as an AutoEncoder for learning causal struc-
ture. Inputting causal sentence, the position information of 𝑣𝑖 is
tagged in Encoder based on Denoising AutoEncoder(DAE)[36], then
in Decoder, randomly add some noise to the sentence, and encode
the fixed length vector, as well as randomly mask the words around
𝑣𝑖 . The goal of training is to recover the embeddeding representa-
tion of the original causal sentence from the noise data and learn
its semantic structural information.
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Table 1: Part of the causal trigger words.

arouse caused by give rise to inasmuch as owing to stem from
beacuse coz of have effect on induce provoke that’s why

beacuse of elicit hence lead result from therefore
bring about engender if, then lead to result in thus

by reason that evoked in consequence of on account of so that ...

Specifically, tagging the position of trigger word during input
aims to distinguish the cause and effect of sentences. Randomly
added disturbances (delete, add, exchange, etc.) and masks aim to
minimize the loss function, restore the lost information compressed
around 𝑣𝑖 , and improve the robustness of causality representation.
Our training objective function can be formalized as follows:

𝐽𝐷𝐴𝐸 (𝜃 ) = E𝑠∼S
[
log 𝑃𝜃 (𝑠 | 𝑆)

]
= E𝑠∼S

[
𝑙∑︁
𝑡=1

log 𝑃𝜃
(
𝑠𝑡 | 𝑆

)]

= E𝑠∼S


𝑙∑︁
𝑡=1

log
exp

(
ℎ𝑇𝑡 𝑒𝑡

)
∑𝑁
𝑖=1 exp

(
ℎ𝑇𝑡 𝑒𝑖

) 
(3)

Where S is the corpus set of all causality sentences,𝑠𝑙 is the input
sentence with length 𝑙 , and 𝑆 is the sentence with noise added to
𝑠 . 𝑒𝑡 is the word embedding representation of 𝑠𝑡 ,𝑁 is vocabulary
size, ℎ𝑡 is the hidden state of the encoder’s 𝑡 step output. We use
cross-attention as part of Decoder, which can be formalized as
follows:

𝐻 (𝑘) = Attention
(
𝐻 (𝑘−1) ,

[
𝑠𝑇

]
,
[
𝑠𝑇

] )
Attention (𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇

√
𝑑

)
𝑉

(4)

𝐻 (𝑘) is the hidden state within 𝑡 steps of 𝑘 layer in Decoder, and
𝑑 is the dimension of causal sentence vector;

[
𝑠𝑇

]
∈ R𝑙×𝑑 is a

sentence vector output by Encoder. No matter which layer of cross-
attention,𝐾 and 𝑉 will always be

[
𝑠𝑇

]
. The purpose of this design

is to manually add a bottleneck to the model, make Encoder more
accurate and increase the adaptability of the domain. This unsuper-
vised network structure does not require annotation data, but only
needs fine-tuning to encode the structure of causality sentences, so
as to learn causal dependency and prior knowledge.

3.5 Causality classification
Causality classification is the last composition of 2SCE-4SL, which
combines the triplet structure of the stage 1 and the hidden state
vector of the stage 2. The positive causal pairs will be identified
from noisy causal triplets based on fine-tuning model 𝑴 .

Given any causal pair ∀(𝑐, 𝑣, 𝑒), the purpose is to determine
whether causality, we convert this task into binary classification.
In order to better solve the problems of noise interference and in-
sufficient labeled data, contrastive learning method[13] is adopted.
Dividing the training data into positive samples and negative sam-
ples, in which positive samples is any causal pair in the same cat-
egory while negative samples is different pair. The constructed
positive and negative samples are introduced into the stage 2 for

causality sentences 

Encoder

pooling

Decoder

causality sentences 
embedding

Tag

Mask

Noise

Figure 4: Architecture of causality representation.The ar-
chitecture is an AutoEncoder based on Transformer model,
which is composed of an Encoder and a Decoder.The Encoder
tags the trigger word of a causal sentence when input, and
then randomly adds disturbance information (deletion, ad-
dition, exchange, etc.), randomly masks some words before
the Decoder. The training object is to recover the embedding
representation of the original causal sentence from the noise
data and learn semantic structural information.

encoding. For each encoded causal pair 𝑠𝑡 , its objective is to identify
the confidence degree of 𝑠𝑡 according to model parameters and
features of causal sentences. The loss function during training can
be formalized as follows:

C𝑜𝑠𝑡 (ℎ𝜃 (𝑠𝑡 ) , 𝑦) = −𝑦𝑖 log (ℎ𝜃 (𝑠𝑡 )) − (1 − 𝑦𝑖 ) log (1 − (ℎ𝜃 (𝑠𝑡 ))
(5)

When 𝑦 = 1, that’s the positive sample, and if ℎ𝜃 (𝑠𝑡 ) = 1, then
C𝑜𝑠𝑡 = 0 for this sample alone, that means that this sample is
completely accurate. If all samples are correctly predicted, the total
C𝑜𝑠𝑡 will approach 0. But if the probability ℎ𝜃 (𝑠𝑡 ) = 0 is predicted
at this time, then C𝑜𝑠𝑡 → ∞. By iteratively learning the semantic
relationship between causal pairs, the parameter 𝜃 of hidden ℎ𝑡
was updated to reduce the noise of pseudo causal pairs and identify
the true causal pairs.

4 EXPERIMENT
4.1 Dataset and evaluation
4.1.1 Dataset. We chose S2ORC[26] as our experimental data,
which is a common English corpus for NLP and text mining re-
search of scientific papers developed by Allen Institute for AI. The
S2ORC is collected from open access platforms such as MAG,arXiv,
PubMed and stored in a structured form. The dataset contains 81
million papers in 20 disciplines such as Computer Science, Material
Science, Economics, Medicine, etc.

5



Table 2: Causality sentences on CS and Med.

CS Med
Title 160 2526
Abstract 4130 9251
Full_Text 113063 134588
Sum 117353 146365

In this work, we took Computer Science(CS) and Medicine(Med)
as examples to extract causality. These two fields are the most pop-
ular subjects at present, both of which belong to interdisciplinary
subjects. Moreover, choosing different disciplines can verify the
robustness of the 2SCE-4SL. Because the S2ORC is very large (over
12.7 million full-text papers), we randomly sampled some papers
and selected the title, abstract and full-text as extraction objects
respectively. CS and Med each collected 100,000 papers for a total
of 200,000 papers.

4.1.2 Evaluation. Wedesigned a architecture for representing causal-
ity sentences in section 3.4, but how to measure the quality and
validity of causality representation? Two experiments will be eval-
uated in section 4.2.2:

• Whether the architecture captures causal dependency of
sentences. Theoretically, if causal dependency can be learned,
the similarity of causal pairs of same label will be higher,
and that of the dissimilar label will be lower. Therefore, we
will calculate the similarity between labeled causal pairs to
measure causal dependency.

• Whether the architecture learns the semantic information of
causal sentences. We will use the Semantic Textual Similarity
(STS) task for evaluation by randomly drawing sentences
and calculating their similarity.

More importantly, the necessary contrast experiments and abla-
tion experiments are key to verify the effectiveness of 2SCE-4SL.
To compare the effect, SciBert[2], a pre training model based on sci-
entific papers, will be compared with 2SCE-4SL as baseline method
for CE. Specifically, we will compare and analyze the four aspects
in 4.2.3:

• Whether there are differences in causality extraction among
different disciplines (CS, Med);

• Whether different amounts of training data affect the results;
• The effect of whether causality representation (stage 2) on
the results;

• Whether there are differences in the performance results of
different document lengths (title, abstract, full-text).

4.2 Results
4.2.1 Causality detection and collocation on scientific literature.
We parsed JSON-structured S2ORC, identify CS and Med literature
(including multi-label discipline literature), and parse the title, ab-
stract, and full-text. Then, causal sentences were detected based on
pre-defined causal trigger words, including 117,353 in Computer
Science and 146,365 in Medical Science, as shown in table 2.

There are differences in the distribution of different types of
documents. As shown in Fig. 5, it can be found that compared
with the distribution of abstract, the sentence length distribution of
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Figure 5: Length distribution of causality sentences. The
length distribution of causal sentences varies with differ-
ent types of documents, with the title being the shortest and
the full text the longest, and gradually approaching the ex-
treme long-tail distribution with the increase of sentence
length.

titles is shorter, with the overall distribution around 100. However,
the causal sentences in the whole text are longer and follow the
typical long-tail distribution. The distribution of sentence length
may produce different features in the representation of causality,
which will have different effects on the subsequent classification
effect of the causal triplets.

In the stage 1, based on the detected causal sentences, syntac-
tic analysis and causality collocation were carried out for these
sentences. We parsed it in ScispaCy, loading the en-core-sci-scibert
model to parse out entities, proper nouns, or combinations. After
collocation, three annotators in the professional field will search
for the corresponding statement from the article according to the
index. If true causal pair, it will be marked as 1; otherwise, marked
as 0. Only when at least two annotations are consistent, it will be
valid. In the titles, abstracts and full -texts of the two disciplines,
400 are marked respectively, and 2400 causal pairs are labeled in
total. These annotated data will be used for few-shot training.

4.2.2 Causality representation on scientific literature. In the stage 2,
the pre-training model was used for fine-tuning. Unlabeled causal-
ity sentences were put into the model, SciBERT[2] was used as the
initial model, and then the position information of the causal trigger
words was tagged. These input causality sentences are automati-
cally encoded by adding noise functions through the DenoisingAu-
toEncoderLoss function. The added noise includes delete, add, swap,
and mask. As the representation training cost a lot of resources,we
adopted the method of parallel training. 10000 pieces of data were
input for each batch of different subjects, batch size set to 8, epochs
set 10, weight decay 0 and learning-rate 3e-5.

(1) Evaluation for causal dependency
The similarity of the causal pairs of same label and different label

were calculated respectively, the results are shown in Fig. 6.When
label both 1, the similarity of causal triplets is about 0.3(Fig. 6 (a))
and 0.55(Fig. 6 (b)), and when labels are 0, the average similarity is
0.2. When the positive and negative samples are mixed, the average
similarity is only less than 0.2. It can be found that the similarity be-
tween positive samples is the highest, while the similarity of mixed
labels is not as good as that of the same labels on the whole, and
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Figure 6: Evaluation for the causal dependency and semantic
information.(a) and (b) are the sample similarity of CS and
Med respectively. When both labels are 1, they have higher
similarity, indicating that causal dependency of sentences
can be captured. (c) is semantic search for causality repre-
sentation. Input a paragraph to query the closest result, 5 re-
turned records indicate that semantic information of causal
sentences can be captured.

the dispersion degree between their causal pairs is more significant,
indicating that the model can capture the structure between true
causal triplets. Learn about causal dependency from these causal
sentences. It is worth noting that the similarity between the positive
samples of CS is low, only about 0.3, and the upper and lower limits
are further, which may be due to the annotation quality of these
samples needs to be improved, and cannot be well distinguished
from negative samples, which need be further optimized in the
future.

(2) Evaluation for semantic information
To assess the ability of the causality representation architecture

to capture semantic information, we measured its performance
on the STS task. Inputting a causal sentence randomly "However,
small perturbations of the CiteSeer data lead to significant changes
to most of the clusters.", return the 5 sentences closest to it. The
similarity of the first sentence "Removing such large groups can
result in significant changes to the model" is 0.9102, which shows
that it has a good performance. The other returned causal sentences
have certain semantic similarity more or less, indicating that the
structure can capture the semantic features of sentences. Although
there are still some differences in semantic search, we believe that
the effect will be better when the corpus is increased.

4.2.3 Causality classification on scientific literature. (1) Compari-
son of different data volumes

Firstly, the classification metrics of CS and Med causal pairs were
compared, training data of 300,600 and 1200 were set respectively
and split 7:3,train-loss set as cosine similarity loss, iterative set 10,
results are shown in table 3.

Although belonging to few-shot training, it is similar to super-
vised learning, the increase of training data will improve the pre-
cision and F1 of the model accordingly. Therefore, in the future
semi-supervised learning can be adopted to obtain more training
data in subsequent studies, and then the model can be trained twice
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Figure 7: Ablation experiment for causality representa-
tion.The labels of test data after causality representation
have better separability and clearer boundaries, especially
CS, while the boundaries between labels without causal rep-
resentation are fuzzy.

to improve the capability of 2SCE-4SL by increasing the amount of
data.

(2) Ablation experiment: whether causality representation
Does the causality representation of the stage 2 contribute to

the outcome? To test this idea, we performed ablation experiments
to compare the classification performance before and after stage 2.
Without representation means that manually annotated data are
directly put into pre-training models (such as BERT and SciBert)
for training, and then classified after fine-tuning. Here, we take the
original SciBert as the baseline of ablation experiment, and take the
model after the representation of causality sentences in SciBert as
the comparison. Other parameters are consistent with those before,
and the training data is set to 1200. After 10 iterations, The results on
CS and Med are shown in table 4. It can be found that the precision
before representation are 0.8481 and 0.7368 respectively; After stage
2, precision were 0.8811 and 0.8152 respectively, indicating that
increasing causality representation at stage 2 significantly improved
the results.

When the causal sentences is represented, the position infor-
mation tagged with the trigger word can clearly distinguish the
cause and effect, and the position information is added into the
logical structure when encoding to make the structure of the causal
sentence clearer. The test datasets of CS and Med are mapped to 2D
coordinates, as shown in Fig. 7, the results are consistent with table
4. After stage 2, the true causal pair is more concentrated, the over-
all distribution shows good separability, and the false causal pair is
more discrete, which confirms the help of causality representation
to classification. After encoder and decoder add noise, the causal
sentence can restore the information of the sentence itself, obtain
the implied parameters of the sentence, and obtain the feature ex-
traction ability even in the case of small sample size. Compared
with the deep learning model with complex structure, only shallow
network structure is required. The generalization ability of a single
field is relatively strong, with good adaptability to the field.

(3) Comparison of different document lengths
We also compare the influence of different document lengths on

classification metrics. The training data of the title, abstract and
full-text in the two disciplines are all 400, including 200 positive
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Table 3: Metrics on different subjects and training data

Subject→ CS Med
Size↓ / Metric→ P R F1 P R F1

300 0.6923 0.8780 0.7742 0.8367 0.7885 0.8119
600 0.8696 0.8163 0.8421 0.7927 0.8500 0.8204
1200 0.8811 0.9056 0.8932 0.8152 0.8721 0.8427

Table 4: Ablation experiment: whether causality representation

Subject→ CS Med
Ablation Experiment↓/Metric→ P R F1 P R F1
With Causality Representation 0.8811 0.9056 0.8932 0.8152 0.8721 0.8427

Without Causality Representation 0.8481 0.7791 0.8121 0.7368 0.7778 0.7568
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Figure 8: Relationship between document length distribution
and classification performance. The longer the length, the
better the classification performance. For example, CS, the
full-text causal sentence has a longer distribution, with P,R
and F1 exceeding 0.9.

samples and 200 negative samples. The parameters of causality, loss
function and optimization function are controlled unchanged. After
iterative training, the performances on CS and Med are shown in
table 5. It can be found that, on CS, the best performance is in the
full text, followed by the title. On Med, full text is the best, followed
by abstract. The average precision of the two disciplines is 0.9420.

The relationship between length distribution and performance
of causal sentences is shown in Fig. 8. It can be seen from the
distribution that the precision of different document lengths is
positively correlated with the length distribution of documents.
The longer the overall distribution of documents tends to be, the
higher the accuracy of documents will be. One possible reason is
that longer documents capture more information in stage 2, thus
releasing effective energy in classification. Therefore, in the future
extraction scene, the extraction of full text content should become
the main form, which can not only obtain better precision, but
also extract more fine-grained knowledge information from the
literature, and provide more effective features for more downstream
tasks.

5 CONCLUSION
In this paper, we propose a novel framework for scientific literature
causality extraction, 2SCE-4SL, which consists of two stages. In
stage 1, causal trigger words and entities are identified and collocate
into noisy triplets. In stage 2, causality sentences are represented
to learn semantic information, this kind of representation can effec-
tively learn the causal dependency and domain-specific knowledge
of paper. We compared open scientific literature data in four aspects
of the experiments. Results show that the average precision of the
2SCE-4SL is 0.8146, and the F1 is 0.8308, which is the best in the
full text with an average precision of 0.9420. And as the training
data grows, so does the precision, which makes future optimization
possible.

To the best of our knowledge, there are few studies on causality
extraction in scientific papers, although this is a direction with great
potential, we hope this work can provide enlightenment for relevant
research. The principal theoretical implication of this study is that
promotes scientific literature mining, especially scientific papers,
to make progress towards deeper natural language inference(NLI)
and natural language understanding(NLU), which provides more
possibilities for many downstream tasks driven by knowledge and
provides a basic guarantee for promoting multidisciplinary knowl-
edge discovery. The principal practical implementation of this study
is that 2SCE-4SL only needs a small amount of annotation data to
achieve good performance, which provides more possibilities for
future performance optimization. In addition, the use of classifi-
cation framework for causality extraction can reduce the labeling
time and improve the efficiency.

Despite these promising results, questions remain. Firstly, 2SCE-
4SL extracts only explicit causality and does not include implicit
causality. Due to the limitation of causal trigger words, those im-
plicit causalities (i.e. without trigger words but expressing causality)
are difficult to be identified. Secondly, the second stage of 2SCE-4SL
is represented in sentences rather than paragraphs, which means
that those long-distance causality are difficult to identify. Finally,
because the framework involves many processes, it remaines to
be improved compared with end2end methods, and tag generation
requires the intervention of professionals. In the future, we will
solve these questions and applications of more downstream tasks.
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Table 5: Metric on different document lengths

Subject→ CS Med
DifferentLength↓/Metric→ P R F1 P R F1

Title 0.8750 0.8167 0.8449 0.7857 0.7333 0.7586
Abstract 0.7778 0.8167 0.7967 0.7966 0.7833 0.7899
FullText 0.9322 0.9167 0.9244 0.9516 0.9833 0.9672
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