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ABSTRACT
Generally speaking, a scientific paper presents the result of a spe-
cific research area and provides a solution to the research question.
With the exponential expansion in the number of scientific pub-
lications, a large amount of valuable information is submerged.
Although existing information extraction methods can extract enti-
ties and relations, they are unable to directly provide readers with
the mechanism that reveals the path to solve the problem. Inspired
by the biomedical research of medical mechanism, in this paper,
we propose a novel knowledge schema, i.e., metrics-driven mech-
anism knowledge schema (Operation, Effect, Direction), which
depict the knowledge about “How to optimize the quantitative and
qualitative metrics of a specific task?”. Furthermore, we select the
natural language processing domain for practice, which is a rep-
resentative branch of Artificial Intelligence (AI). Specifically, we
construct a mechanism sentence extraction dataset and a mecha-
nism triple extraction dataset using abstract data from ACL papers
based on the proposed schema. Then we propose a metrics-driven
mechanism knowledge extraction pipeline based on the pre-trained
model. Finally, a knowledge base of metrics-driven mechanisms in
the natural language processing (NLP) domain, named NLPMKB, is
constructed. The human evaluation results show that the extracted
mechanism knowledge from NLPMKB is high-quality with 87.0%
precision and 79.4% recall. Moreover, the experiments on the knowl-
edge retrieval task demonstrate that the performance can be further
improved with the support of the NLPMKB.

CCS CONCEPTS
• Computing methodologies→ Information extraction.
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1 INTRODUCTION
“Much of the practice of science can be under-
stood in terms of the discovery and description
of mechanisms.” — Machamer et al. [32]

As a kind of knowledge, mechanism reveals how to manip-
ulate things and help people understand the path to solve the
problem[13, 32]. With the prosperous development of Artificial
Intelligence (AI), the research field of AI is rapidly extending in
multiple disciplines, and the corresponding research publications
are growing rapidly. From the perspective of solving problems, AI
research can be regarded as a work of discovering and describing
the mechanisms between a specific problem and the corresponding
solution [34]. In this paper, we explore the metrics-driven mecha-
nism extraction from the abstract of AI articles.

Benchmarks [33] formalize a particular task through datasets and
associated quantitative evaluation metrics. Improving the perfor-
mance reflected by evaluation metrics on established benchmarks is
an important way to increase the legitimacy of a research work [23].
Inspired by the definition of the benchmark-driven methodology
[40], we define the metrics-driven research pattern in AI as the
pattern that focuses on optimizing the performance of a particular
task reflected by the quantitative and qualitative metrics. Therefore,
the metrics-driven mechanism in our paper can be regarded as
knowledge about how to optimize the quantitative and qualitative
metrics of a specific task.

Generally speaking, readers have specific questions when read-
ing scientific publications [7]. For instance, Can the mechanism
knowledge discovered in this paper solve my problem? is the general
question that arises when readers read scientific papers to solve
problems using AI knowledge. In the past 20 years, the number of
scientific publications in the AI domain has grown twelvefold [47].
As a result, a large number of valuable mechanism knowledge has
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Figure 1: Our model primarily focuses on extracting the
metrics-driven mechanism knowledge in the abstract regard-
ing the operations related to performance improvement and
optimization. The orange block is the task entity, the green
blocks are the operation entities, and the blue blocks are the
effect entities. The arrows between the operation entity and
the effect entity indicate a change in direction by the effect
entity under the influence of the operation entity.

unfortunately been submerged in the “information flood”. Since
a large amount of information is encoded in a paper in the form
of text, it is difficult for people to obtain mechanism knowledge
when facing “information overload”. Therefore, it is evident that
extracting the information contained in scientific publications can
improve the efficiency of searching and reading when facing a
specific question, as shown in Figure 1.

Research in natural language processing (NLP) has provided
great convenience in terms of extracting fine-grained entities and
relations in scientific publications, including task entity, method
entity, dataset entity, and metric entity identification [11, 18, 20, 31,
44]; chemical entity recognition [19, 39]; and biomedical named en-
tity recognition [14]. Most of the current works extract descriptive
scientific information instead of procedural scientific information.
For instance, descriptive scientific information includes the prob-
lems addressed in scientific publications, the domain of a research
question, and the method used to address a problem [36]. As a
kind of procedural scientific information, a discovered mechanism
oriented toward improving quantitative metrics in AI is neglected
in scientific information extraction.

Inspired by Chen et al. [6] and Hope et al. [16], we construct
a metrics-driven mechanism knowledge representation schema
to express the key procedural scientific information in AI. In our
scheme, the metrics-driven mechanism knowledge is represented as
a triple (𝑶𝒑𝒆𝒓𝒂𝒕 𝒊𝒐𝒏, 𝑬𝒇𝒇𝒆𝒄𝒕,𝑫𝒊𝒓𝒆𝒄𝒕 𝒊𝒐𝒏) . Operation is the entity
that refers to the innovative model, method, or approach proposed
in a paper. Effect is the entity that refers to the metrics evaluating
operation’s effectiveness or performance. Direction, regarded as
the relationship between the operation entity and the effect en-
tity, refers to the change in direction by the effect entity under the
influence of the operation entity. Based on the trade-off between
scalability and expression capabilities, we preliminarily divide the

Direction into three categories: positive effect, negative effect, and
other. The coarse-grained metrics-driven mechanism knowledge
representation schema achieves a balance between domain adapt-
ability and universality, which can be applied not only in AI but
also in biology and chemistry.

This paper chooses the NLP domain for practice since it is a
representative and prosperous branch of AI. First, we construct an
annotated mechanism knowledge extraction dataset based on the
abstracts of ACL papers1. Then, we propose a model that utilizes the
pre-trained knowledge to extract metrics-driven mechanism triples.
Finally, we construct a metrics-driven mechanism knowledge base
in NLP, named NLPMKB, to further improve the performance of
knowledge retrieval.

In summary, our primary contributions are as follows:
• We propose a coarse-grained metrics-driven mechanism knowl-
edge representation schema. Moreover, based on the proposed
schema, an annotated dataset is constructed in the field of NLP
with 1,486 mechanism triples.

• Utilizing the annotated dataset, we train an information extrac-
tion (IE) model. The experimental results show that the BERT-
based mechanism sentence extraction model can achieve an 89
F1 score, and the mechanism triple extraction model based on
SpERT achieves 78.7 and 59.8 F1 score on the mechanism entity
recognition task and the relation extraction task, respectively.

• Based on the trainedmodel, a large number of publications inACL
are extracted to construct a metrics-driven mechanism knowl-
edge base (KB) in the NLP domain. The human evaluation results
show that our metrics-driven mechanism KB has high quality
and utility. Our search engine achieves 20- and 12-point improve-
ments on P@3 and P@5 in the metrics-driven mechanism knowl-
edge retrieval task.

2 RELATEDWORK
2.1 Mechanism Knowledge in Science
Mechanisms are involved in the research of many disciplines. In
biology, biochemists and molecular biologists pursue explanations
of genes, proteins, and the molecules that influence biochemical
reactions in the context of mechanistic explanations [3, 38, 46]. In
chemistry, researchers regard chemical reactions as a mechanism.

According to the Oxford dictionary, a mechanism is “a natural
system or type of behavior that performs a particular function”2. In
the philosophy of science, there is a great deal of discussion about
the formal definition of mechanism. For example, Machamer et al.
[32] defined mechanisms as organized entities and activities that
produce regular changes from start or set-up to finish or termina-
tion conditions. Glennan [13] defined the mechanism as a complex
system that produces behavior through the interaction of several
parts according to direct causal laws.

2.2 Information Extraction
Information extraction (IE) refers to the extraction of structured
information from unstructured or semi-structured texts. In gen-
eral, the problem of IE is composed of Named Entity Recognition

1https://aclanthology.org
2https://www.oxfordlearnersdictionaries.com/definition/academic/mechanism
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(NER) and Relation Extraction (RE) tasks. There are two types of
approaches for IE: the pipeline-based approach and the end-to-end
joint approach.

As for the pipeline-based approach, the model first recognizes
entities using a NERmethod and then extracts the relations between
recognized entities with an RE method [5, 28, 48]. The strength
of the pipeline-based approach is its flexibility when integrating
different data sources and methods. However, its weakness is the
error propagation problem between the individual NER step and
RE step.

In terms of the end-to-end joint approach, the model jointly
extracts entities and relations using the shared layer or shared
parameters between the NER task and the RE task; such models
include DygIE++ [43] and SpERT [10]). Moreover, Yan et al. [45]
employed an encoder-decoder framework based on BART [25] to
extract entities in the text. Li et al. [27] designed an alternative
strategy in which they cast the entity-relation extraction as a multi-
turn question-answering problem.

2.3 Scientific Information Extraction
Information extraction from scientific literature allows researchers
to gain key insights from scientific documents. There are differences
in the types of entities and relations in different fields.

In AI, current scientific information extraction research primar-
ily focuses on extracting keyphrases [21, 22], lexical functions of
keyphrases [30], fine-grained scientific entities (e.g. Task, Method,
Dataset, andMetric) [9, 18, 20, 26, 31], and relations[2, 12, 35]. In Se-
mEval 2017 Task-10, Augenstein et al. [2] proposed the hyponym-of
and synonym-of relations. In SemEval 2018 Task-7, Gábor et al. [12]
proposed the usage, result, part-whole, and compare relations. Re-
cently, Mondal et al. [35] proposed the evaluated-On and evaluated-
By relations.

In short, current scientific information extraction research em-
phasizes descriptive information (e.g., task entities, method entities,
dataset entities, and the relations between them), which primarily
focuses on declarative information instead of procedural infor-
mation in academic publications. Our work further extends the
procedural information of mechanism knowledge between pro-
posed operation entities and performance metric entities as they
are oriented to the specific problem.

There are several studies related to mechanism knowledge ex-
traction and representation in a specific domain. Hope et al. [17]
proposed a weak structural representation that describes an idea
in product descriptions regarding purpose (what they are trying to
achieve) and mechanism (how they achieve that purpose). Chen et al.
[6] identified the hypothesis sentences from scientific documents
in business and management. Then, they extracted cause and ef-
fect entities in those hypothesis sentences. Hope et al. [16] built a
COVID-19 mechanism relations knowledge base, which includes
activities, functions, and influences relations extracted from CORD-
19 papers. In summary, what current studies have in common is
that they construct a very simple mechanism knowledge represen-
tation schema, which is an optimal solution considering trade-offs
in terms of ease of extraction, scalability, and coverage.

Table 1: The Mechanism knowledge in scientific research.
The mechanism examples come from scientific abstracts in
natural language processing (NLP), computer vision (CV),
chemistry(Chem), and biology(Bio).

No. Example Field

1 We apply SVM ranking models and achieve an
exact sentence accuracy of 85.40 % on the Redwoods
corpus.

NLP

2 In this paper, we experimentally study the combi-
nation of face and facial feature detectors to
improve face detection performance.

CV

3 The rate of reduction is decreased by increasing
amounts of stabilizing agents and increased by
increasing concentrations of precursor ions.

Chem

4 Low light availability and high nutrient avail-
ability increased the nitrogen content of leaf tis-
sue by 53% and 40% respectively, resulting in a 37%
and 31% decrease in the C/N ratio.

Chem

5 In conclusion, high-energy dietmay improve num-
ber of small follicles and alter energymetabolite
during early luteal phase in cycling ewes.

Bio

6 Knocking down the expression of TaLSD1
through virus-induced gene silencing (VIGS) in-
creased wheat resistance against Pst accompanied
by an enhanced hypersensitive response (HR), an
increase in PR1 gene expression and a reduction in
Pst hyphal growth.

Bio

3 DATA AND TASK
3.1 Schema of Mechanism
In many scientific fields, a detailed description of the mechanism
is required to deliver a satisfactory explanation [32]. Mechanism,
a kind of knowledge, reveals how to manipulate things, promotes
the development of science, and aids researchers in understanding
and solving problems.

As shown in Table 1, mechanism knowledge exists in AI (e.g.,
natural language processing and computer vision), chemistry, biol-
ogy, and other fields. Although the research fields are different, the
common point core of mechanism knowledge is that it expresses
the influential relationship between things or entities in a scheme.
Whether the things or entities expressed in the mechanism are
concrete (e.g., chemicals, cells, and plants) or abstract (e.g., theory
and concept), we divide these things or entities into two types,
operation and effect, based on the role in the mechanism.

We find that the mechanism knowledge in artificial intelligence
research is primarily metric-driven, that is, it states the effect of
the proposed methods and models on specific metrics as a key
conclusion in the abstract of a scientific paper. The common ex-
pression forms primarily include the following two types based on
the analysis and refinement of a large number of paper abstracts:

(1) A direct description of the effect of the innovative model
or method on the specific metric or aspect, such as: model
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Figure 2: Metrics-driven mechanism annotation process.

X improves (reduces/affects/achieves) metric M with specific
change value (e.g., percentage).

(2) An indirect description of the effect of the innovative model
or method on the specific metric or aspect by comparison,
such as: compared with the baseline, model X outperforms (or
an adjective expressing the comparative degree) on M metric.

In our schema, metrics-driven mechanism knowledge in the
form of natural language can be abstracted as a triple (𝑶𝒑𝒆𝒓𝒂𝒕 𝒊𝒐𝒏,
𝑬𝒇𝒇𝒆𝒄𝒕,𝑫𝒊𝒓𝒆𝒄𝒕 𝒊𝒐𝒏). This metric-driven mechanism triple repre-
sents an entity such as a model or a model proposed by the re-
searcher, that corresponds to the “applying dictionary and web-
based answer reranking together” in Figure 3. Effect in a metric-
driven mechanism triple represents the metric entity, which corre-
sponds to the “mean reciprocal rank score” in Figure 3. Direction
expresses the relationship between the operation entity and the
effect entity, which corresponds to the “increase” in Figure 4.

The results indicate [applying dictionary and web-based 
 answer reranking together] approach increase the performance

of Webclopedia on a set of 102 TREC-10 definition questions
by 25% in [mean reciprocal rank score]metric and 14% in

finding answers in the top 5.

Figure 3: Metrics-driven mechanism knowledge in a natural
language form.

applying dictionary and web-
based answer reranking together 
 mean reciprocal rank score

increase


Figure 4: Metrics-driven mechanism knowledge in a triplet
form.

Effect is a measurable and comparable entity in a metrics-driven
mechanism knowledge schema. Therefore, we use the trisection
method to divide the Direction in the metrics-driven mechanism
knowledge triple into positive effect, negative effect, and other in a
coarse-grained manner.

• Positive effect: the method/model proposed in the research ar-
ticle improves the metric. For example, the pretraining model
improves the F1 score of the text classification task.

• Negative effect: themethod/model proposed in the research article
reduces the metric. Examples include using structural features
to reduce the alignment error rate.

• Other: other than the above two relationships. For example, a
external feature affect the metric but we did not know the effect
direction.

3.2 Task Definition
To extract metrics-driven mechanism knowledge from the abstract
text, we divide the target problem into two subtasks, i.e., selection-
then-extraction corresponding to the dataset construction process:

Subtask 1 : mechanism knowledge sentence selection, which
identifies sentences containing mechanism knowledge.

Subtask 2 : mechanism knowledge extraction, which extracts
the mechanism knowledge triples from the recognized sen-
tences.

3.3 Dataset
As shown in Figure 2, the construction of themechanism knowledge
extraction dataset primarily includes two steps: sentence selection
and triple annotation.

The metrics-driven mechanism triples in our annotated dataset
explicitly exist in a single sentence.Note that in our proposed
dataset, the mechanism knowledge described across multiple sen-
tences was excluded due to time and efficiency constraints. As
shown in the following examples, the annotator did not consider
the implicit mechanism knowledge existing between sentences in
the process of annotation. In Examples 1 and 2, the effect entities
(e.g., “accuracy” and “performance” in the examples) and operation
entities (e.g., “using bilingual dictionary and transfer grammar” and
“coarse-to-fine approach” in the examples) are separated from each
other in different sentences.

Example 1 In Malayalam-Tamil pair, the divergence is more re-
ported in lexical and structural level, that is been resolved by
using bilingual dictionary and transfer grammar. The
accuracy is increased to 65 percentage, which is promising.
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Table 2: Statistics of the dataset for subtask 1.

Statistics items Number

Total # of Sentences 4,163
# of Mechanism Sentences 1,032
# of Non-mechanism Sentences 3,131
Avg # tokens 26

Example 2 For decoding, we describe a coarse-to-fine approach
based on lattice dependency parsing of phrase lattices. We
demonstrateperformance improvements for Chinese-English
and Urdu-English translation over a phrase-based baseline.

3.3.1 Sentence selection. We find that most of the sentences con-
taining the metrics-driven mechanism are distributes in the conclu-
sion part, and it is intuitive that sentences containing the metrics-
driven mechanism also contain the metric entities. Given a paper
abstract, the annotator first needs to choose the target sentence
that contains the metrics-driven mechanism knowledge. To im-
prove annotation efficiency, three heuristic rules are proposed to
detect possible target abstract sentences. Specifically, heuristic rules
primarily consider three aspects: verbs, metric entities, and argu-
mentation functionality types [1, 41, 42] in the sentence.
• Cue Verb Rule: verb words such as effect, influence, decrease,
reduce, increase, and improve as well as their noun forms.

• Metric Rule: specific metric entities such as accuracy, F1 score,
and BLEU as well as abstractive metric entities such as perfor-
mance and quality.

• Argumentation Functionality Rule: the argument functional-
ity of the sentence is the “proposal” or “outcome”.
To apply these rules, we use SpERT[10] to recognize the metric

entities in a sentence and trained a BERT-based argumentation
functionality classifier based on the schema and dataset proposed
by Accuosto and Saggion [1] in computational linguistics.

3.3.2 Triple annotation. Given a selected sentence containingmetrics-
driven knowledge, the annotator needs to label the entities in the
metrics-driven mechanism’s schema and then determine the rela-
tionship between entities based on the context.

We use brat1 as the annotation tool for mechanism sentence
recognition and mechanism knowledge tagging. The two annota-
tors are graduate students with NLP backgrounds. For annotation
disagreement on entity boundaries (e.g., “our model” vs. “model”),
we choose the longer annotation (e.g., “our model”). The inter-
annotator agreement score of our dataset is 0.9522.

3.3.3 Annotated dataset analysis. Based on the annotated dataset,
summaries of the statistics for the datasets for subtask 1 and sub-
task 2 are provided in Table 2 and Table 3. As shown in Table 2,
the proportion of sentences containing mechanism knowledge is
relatively low compared with non-mechanism sentences. We find
that mechanism sentences are primarily distributed in the third to
sixth sentence as shown in Figure 5. In addition, it can be found

1https://brat.nlplab.org/standoff.html
2The tool (https://github.com/kldtz/bratiaa) we adopted to calculate the F1 score of
per document or label as the inter-annotator agreement score.

Table 3: Statistics of the dataset for subtask 2.

Statistics items Number

Total # of Sentences 1,032
Avg # of Sentence Tokens 31
# of Entities 2,525
# of Operation Entities 1,214
Avg # of Operation Entity Tokens 3.02
# of Affect Entities 1,311
Avg # of Effect Entity Tokens 1.76
# of Relations 1,486
# of Pos Effect Relations 1,056
# of Neg Effect Relations 217
# of Affect Relations 213

in Table 3 that the distribution of metric mechanism knowledge
relations is also highly imbalanced, and positive effect relations
account for the majority.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ 7𝑡ℎ 8𝑡ℎ

50

100

150

200

Sentence Position

Co
un

t

Figure 5: Position distribution of mechanism sentences in
abstracts of papers.

4 KB CONSTRUCTION
We describe our approach, which is depicted in Figure 6, for ex-
tracting mechanisms from the abstracts of scientific papers. We
first trained a metrics-driven mechanism knowledge extraction
model based on the annotated dataset from a small collection of
ACL papers (Section 3.3). Then, the trained model was applied to
scientific papers in the natural language processing domain to build
an NLP metrics-driven Mechanism Knowledge Base (NLPMKB),
which supports and further improves the retrieval performance
for metric-driven mechanisms. Finally, we built a metrics-driven
mechanism knowledge search engine.

https://brat.nlplab.org/standoff.html
https://github.com/kldtz/bratiaa
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4.1 Extraction Pipeline for Mechanisms
Knowledge

We propose a metrics-driven mechanism extraction pipeline that
includes two steps: mechanism sentence extraction and mech-
anism triple extraction. Recently, pretrained language models,
e.g., BERT[8], RoBERTa[29], and SciBERT[4], have promoted the
performance of natural language understanding tasks ranging from
text classification and named entity recognition to machine reading
comprehension. SciBERT is a pre-trained language model for scien-
tific text, which leverages a large-scale scientific publications as a
pretraining task dataset and advances downstream scientific NLP
tasks. Therefore, our mechanism extraction pipeline uses SciBERT
as a backbone for extracting the text’s semantic information.

4.1.1 Mechanism Sentence Extraction. We formalize the mecha-
nism sentence extraction as a binary text classification task. Given
a sentence 𝑠𝑒𝑛𝑡 in an abstract of a scientific paper, the model needs
to identify whether 𝑠𝑒𝑛𝑡 contains complete metric-driven mecha-
nism knowledge. Our BERT-based mechanism sentence extraction
model has two parts, i.e., text encoder and classification layer. We
formalize the mechanism sentence extraction as a binary text clas-
sification task. Given a sentence in a scientific paper’s abstract, the
model needs to identify whether contains complete metrics-driven
mechanism knowledge. Our BERT-based mechanism sentence ex-
traction model has two parts: a text encoder and a classification
layer.

In the text encoder, we employ SciBERT as a text encoder to
extract the text features that act as the input to the classification

layer. The input of the text encoder can be represented as follows:

𝑿 = [[𝐶𝐿𝑆], 𝑡𝑜𝑘𝑒𝑛1, 𝑡𝑜𝑘𝑒𝑛2, · · · , 𝑡𝑜𝑘𝑒𝑛𝑚, [𝑆𝐸𝑃]]

where 𝑡𝑜𝑘𝑒𝑛𝑖 denotes the 𝑖𝑡ℎ token of the input sentence 𝑠𝑒𝑛𝑡 as
tokenized by the corresponding tokenizer.𝑚 is the token number
of 𝑠𝑒𝑛𝑡 . [𝐶𝐿𝑆] and [𝑆𝐸𝑃] correspond to the special symbol at the
beginning and the end of the sentence, respectively. We can obtain
the text vector representation ℎ via SciBERT:

ℎ = SciBERT(𝑋 )

In the classification layer, we use ℎ𝐶𝐿𝑆 , which is the first com-
ponent of ℎ and corresponds to the [𝐶𝐿𝑆] token, as the input to
the classification layer, which includes a dropout layer and a fully
connected layer. Finally, we apply a softmax function to the label
logits to obtain the probability distribution regarding whether the
input sentence contains metrics-driven mechanism knowledge.

𝑝 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (W · ℎ𝐶𝐿𝑆 + 𝑏)
where 𝑝 is a 2-dimensional vector that denotes the probability that
the sentence contains mechanism knowledge. W and b denote the
weight and bias in the fully connected layer, respectively.

4.1.2 Mechanism Triple Extraction. As described in Section 3.1, the
metrics-driven mechanism is a triple (Operation, Effect, Direction
) triple, where the Operation and the Effect are entities, and the
Direction is the relationship between the Operation and the Effect.
Therefore, we formalize themechanism triple extraction as an entity
and relation extraction task. There are two types of approaches
for entity and relation extraction tasks: pipeline-based approaches
and end-to-end joint approaches. SpERT, proposed by Eberts and
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Ulges [10], is a state-of-the-art end-to-end joint entity and relation
extraction method.

We finetune SpERT on our dataset to jointly extract entities and
relations. As shown in Figure 6, SpERT first obtains the represen-
tation of span and classifies the entity category of span. Second,
SpERT combines the entities in pairs to form the representation of
relations between entities. Finally, entity pairs are classified as one
of {positive effect,negative effect, other}.

The metrics-driven mechanism knowledge is extracted by em-
ploying the finetuned model from the abstracts of 26k ACL papers.
In the extracted mechanism triples, some Operation entities are
pronouns (e.g., “our model”, “proposed method” and “new algo-
rithm”) instead of concrete entities. To alleviate the influence of
this problem, we adopt the coreference resolution method proposed
by AllenAI[24].

4.2 Construction of the NLP Mechanism KB
Task entities refer to research problem in NLP scientific papers.
We further extend the mechanism triple (𝑶𝒑𝒆𝒓𝒂𝒕 𝒊𝒐𝒏 , 𝑬𝒇𝒇𝒆𝒄𝒕,
𝑫𝒊𝒓𝒆𝒄𝒕 𝒊𝒐𝒏) into the (𝑶𝒑𝒆𝒓𝒂𝒕 𝒊𝒐𝒏, 𝑬𝒇𝒇𝒆𝒄𝒕,𝑫𝒊𝒓𝒆𝒄𝒕 𝒊𝒐𝒏, 𝑻𝒂𝒔𝒌) n-ary
mechanism relation. Therefore, the proposed NLP metrics-driven
mechanism KG schema contains three types of entities: tasks, oper-
ations, and effects. According to the schema in Section 3.1, there
are three relation types (positive effect, negative effect, and other)
that describe the influence direction between the operation entity
and the effect entity. In addition, we use evaluatedBy to describe
the relation between the task entity and the effect entity.

The paper research task entity extraction problem is formalized
as a multi-label classification task because of the uncontrollable
research task extraction result based on the sequence-labeling ap-
proaches. In the Papers With Code(PWC)3 , there is a taxonomy
of tasks and subtasks [23]. In addition, there are many available
papers with metadata that indicate the research areas, tasks or sub-
tasks. Based on the BERT model and PWC dataset, a paper task
classification model was finetuned, and it achieves an 87 F1 score.

For a paper without extraction (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐸𝑓 𝑓 𝑒𝑐𝑡, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,
𝑇𝑎𝑠𝑘) n-arymechanism relation, we use the (𝑀𝑒𝑡ℎ𝑜𝑑,𝑀𝑒𝑡𝑟𝑖𝑐, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,

𝑇𝑎𝑠𝑘) n-ary relation as a pseudo n-ary mechanism relation to ex-
press the knowledge that is similar to the metrics-driven mecha-
nism knowledge in our work. Entities in pseudo n-ary mechanism
relations are extracted by the SpERT[10] model trained on the
SCERC[31] dataset. Note that the method entity and the metric
entity refer to the Operation entity and effect entity, respectively.
The direction between them is set as “unknown”.

Finally, we build a knowledge base of metrics-driven mecha-
nisms in the NLP domain (NLPMKB) that consists of 24k n-ary
mechanism relations and 76k pseudo n-ary mechanism relations in
the form of (Method, Metric, Direction,Task).

3Papers With Code (PWC) is an open source repository about papers, datasets, and
evaluation in the machine learning(ML) community and natural language process-
ing(NLP) community created by researchers at Facebook AI Research. We downloaded
the PWC dataset (licensed under CC BY-SA 4.0). We focus on the Papers with abstracts
archive. https://paperswithcode.com

Table 4: Result of mechanisms sentence extraction

Type Precision Recall F1 score

Non mechanism sent 92.5 93.0 92.7
Mechanism sent 77.8 76.7 77.2
Total 89.0 89.0 89.0

Table 5: Result of metrics-driven mechanism recognition

Type Precision Recall F1 score

Entities Extraction
Operation 72.0 66.4 69.1
Effect 86.3 87.6 86.9
Total 79.8 77.6 78.7

Relations Extraction

Pos_eff 59.7 71.7 65.1
Neg_eff 50.0 54.2 52.0
Other 60.0 26.1 36.4
Total 58.1 61.6 59.8

4.3 Construction of Mechanism Knowledge
Search Engine

TheNLPMKBenables applications to retrieve metrics-driven mech-
anisms in NLP. For example, a user can search all papers that contain
a mechanism related to the question: how to improve the diversity of
the keyphrases extraction task. To build the search engine of mecha-
nism knowledge, we first use the multi-qa-MiniLM model4, which
maps sentence and query text to a 384 dimensional dense vector
space. Then, we compute the cosine similarity score to find poten-
tially relevant papers. Finally, we rerank the retrieved sentences
using Cross-Encoder for MS Marco5.

5 EVALUATING THE EXTRACTED
MECHANISM KNOWLEDGE

In this section, we first evaluate the trained mechanism extraction
model (Section 5.1). Then, we evaluate the quality of the extracted
mechanism knowledge from the perspective of correctness and
coverage (Section 5.2). Finally, we evaluate the utility of extracted
metric-driven mechanism knowledge (Section 5.3) in terms of the
mechanism knowledge search scenario.

5.1 Model Evaluations
Evaluation of Subtask 1

For subtask 1, as shown in Table 4, our mechanism sentence
extraction model achieves an 89 F1 score on the testset, which has
454 non-mechanism sentences and 146 mechanism sentences.

Deep learning models are commonly referred to as black boxes.
To understand the reasons underlying the decision making process
and avoid avoid the detection of incorrect features in the data by the
model, we adopt the Local Interpretable Model-agnostic Explana-
tions (LIME), an explainable artificial intelligence (xAI) framework

4https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
5https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2

https://paperswithcode.com
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
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Figure 7: Examples in artificial intelligence, biology and chemistry field for mechanism sentence extraction based on LIME
framework

proposed by Ribeiro et al. [37], to interpret the mechanism sentence
extraction model.

The LIME model is one of the most popular model-agnostic
frameworks, and it primarily focuses on explaining individual pre-
dictions. As for the text classification task, LIME samples instances
around an individual input text instance by adding a perturbation to
the original text; one example of a perturbation involves randomly
deleting words from the original text. Then, LIME classifies the gen-
erated samples using the trained model. Finally, the contribution of
each word in the original text to the final model prediction result is
obtained by the LIME framework.

We randomly select two sentences that contain metrics-driven
mechanism knowledge, as shown in Figure 7, to make reasonable
interpretations about our mechanism sentence extraction model. In
Figure 7, the x-axis refers to the word contribution to the prediction
result, where the positive and negative values correspond to the
probability that the sentence contains mechanism knowledge or
not, respectively. In Figure 7, the verb "improve" and "reduce" that
represent the metric changes direction have the biggest influence
on the prediction.

Benefiting from the BERTmodel’s strong ability in feature extrac-
tion and the domain generalizability of the metrics-driven mecha-
nism representation scheme, although the dataset proposed in this
paper is in the field of natural language processing, our mecha-
nism sentence extraction model and mechanism triple extraction
model still have good performance in other fields, such as biology
and chemistry. the second row in Figure 7 demonstrates the de-
cent generalization performance in other fields such as biology and
chemistry.

Based on the LIME framework, it can be found that the BERT-
based model primarily focuses on key verbs, such as increase, im-
prove, reduce, and decrease, which indicate the metric entities
change direction, to identify the sentences that contain the metrics-
driven mechanism knowledge.

Evaluation of Subtask 2
Identical to the scientific information extraction in terms of entity

granularity, our mechanism triple extract model achieves a 78.67 F1
score on both Operation and Effect entity recognition. For relation
extraction, it achieves a 59.80 F1 score. Using the same method,
our mechanism entity and relation extraction model outperforms
SCIERC, which achieves a 70.33 and 50.84 F1 score corresponding
to entity recognition and relation extraction, respectively.
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Table 6: Human evaluation result for the enhanced mechanism knowledge search engine.

Our search engine Baseline

No Query P@3 P@5 P@3 P@5

1 how to improve F1 on text classification? 100 60 33 60
2 how to improve model generalization? 100 80 100 60
3 how to decrease training time? 100 100 100 100
4 how to improve performance of Named Entity Recognition (NER)? 67 80 33 40
5 how to improve BLEU on machine translation? 100 100 100 100

Avg. 93 84 73 72

Table 7: Human evaluation result of COLING 2020 papers

Ground truth
Predicted Positive Negative

Positive 27 4
Negative 7 62

5.2 Quality Evaluation of Extracted Mechanism
Knowledge.

To evaluate the quality of the metrics-driven mechanism knowl-
edge extracted from the paper abstracts, we randomly selected 100
papers in 2020 COLING and checked the extracted (Operation, Ef-
fect, Direction) triples with a relaxed-match evaluation [15], i.e., an
entity is regarded as positive if its type is correct and there is an
overlap with the ground truth entity boundary.

There are 34 papers that contain metrics-driven mechanism
knowledge in their abstracts. The confusion matrix is shown in
Table 7. We achieve 87.0 precision and 79.4 recall. According to
the analysis of seven papers, the mechanism knowledge could not
be extracted, which we find was caused by the error cascade in
the mechanism’s knowledge extraction model. For instance, “Our
word segmentation system outperforms the previous state-of-the-
art system in both speed and accuracy on both in-domain and
out-domain datasets.” actually contains the mechanism knowledge,
but the mechanism sentence extraction model fails to recognize it.

5.3 Utility Evaluation of Extracted Mechanism
Knowledge

Using the PWC hierarchical task taxonomy, our NLP Mechanism
KB supports the automatic semantic extension of tasks such as ex-
tending Text Generation to Paraphrase Generation, News Generation
and Paper generation. Therefore, for a query about Text Genera-
tion, our NLP Mechanism KB can return mechanism knowledge for
Paraphrase Generation, News Generation and Paper generation.

To illustrate the utility of our mechanism knowledge search
engine, we map the text (e.g., the abstract sentences in a paper, re-
search tasks, and input query) to a shared vector space R𝑑 , where 𝑑
is the vector dimension. In the similarity calculation step, a abstract
sentence and research task are concatenated together to obtain the
semantic vector. Then, the cosine similarity score between the two

semantic vectors is calculated. In the evaluation, our constructed
mechanism knowledge search engine is compared with the base-
line without mechanism knowledge enhancement, which uses all
of the sentences in an abstract as potential candidates instead of
the extracted mechanism sentence. For the sake of fairness, the
baseline uses the same similarity calculation method and backbone
ranking model as our search engine.

As shown in Table 6, the enhanced mechanism knowledge search
engine achieves a significantly better performance against the base-
line method. Specifically, in terms of P@3 and P@5, the enhanced
mechanism knowledge search engine could achieve 20- and 12-
points improvements compared with the baseline method, respec-
tively.

6 CONCLUSION
In this paper, we introduce a coarse-grained representation scheme
to express metrics-driven mechanisms in the field of artificial intelli-
gence. Our scheme achieved a balance between domain adaptability
and universality. Moreover, we construct a dataset based on the ab-
stracts of papers in the NLP field for mechanism sentence extraction
and mechanism triple extraction. Based on the annotated dataset, a
BERT-based metric-driven mechanism knowledge extraction model
is trained and a knowledge base of metrics-driven mechanism in
the NLP field is constructed. The human evaluation shows that
our metrics-driven mechanism knowledge base has high quality,
and the extracted mechanism knowledge achieves 87.0 precision
and 79.4 recall. Additionally, we find that the mechanism search
performance is improved by using the extracted metrics-driven
mechanism knowledge.

Benefitting from the pre-trained model’s learning ability and the
domain generalizability of the metrics-driven mechanism represen-
tation scheme proposed in this paper, the trained model also has the
ability to extract metrics-driven mechanism knowledge in the fields
of biology and chemistry. In the future, we will extract metrics-
driven mechanism knowledge distributed in multiple sentences
and explore the few-shot learning method to build a mechanism
extraction model for general fields.
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