LLM-based Entity Extraction Is Not for Cybersecurity

Maxime Würsch, EPFL & CYD Campus

EEKE Workshop

26.06.2023

Context

- Software present everywhere
 - Contains vulnerabilities
- Technologies evolves fast
 - Increase security gap
- Need to stay up to date
 - Reduce risk of attack
- Common approach is bibliometrics search
 - Using entities extraction
 - Comparing through embedding space
- Emergence of LLM-based entities extraction
 - Need evaluation about performance

Aim

- Measure performance of entities extractors
 - Compare between LLM-based and not
 - Similitudes and differences between models
- Relevance of the method to classify documents
- Are LLM-based entity extractors suited for scientific bibliometrics ?

Large Language Model (LLM)

- Attention since late 2022, with conversational agent's public trials
- Term come from ELMo LLM in 2018
 - At least 100M parameters and 1B tokens
- Now goes to more than trillions of parameters
- Small LLMs
 - Less resources demanding
 - Weaker version of larger model
 - Reduce version of failure modes

Methods (dataset information)

- Comes from arXiv, until late 2022, Computer Science (cs) category
- Subset of the cs category
- Keep only English text
 - XLM-RoBERTa model
- Remove preamble and references

	arXiv selected cs listings		
cs.CR	Cryptography and Security		
cs.NI	Networking and Internet Architecture		
cs.CC	Computational Complexity		
cs.LO	Logic in Computer Science		
cs.DS	Data Structures and Algorithms		

- cs.IT Information Theory
- cs.CL Computation and Language
- cs.AI Artificial Intelligence

Methods (models)

- 4 major types
- Document segmented to fully fit the attention windows
- At most 100 entities extracted
 - Select by highest confidence

Model Name	Refs	Entities/Doc	Туре
spaCy Large ^{*p}	[17]	99.3 ± 6.93	Noun
spaCy Transformer ^{p}	[17]	99.3 ± 6.97	Extractor
$Yake^{*p}$	[5]	19.9 ± 1.97	
$KeyBERT^p$	[15]	99.3 ± 7.25	Kownhroso
KBIR kpcrowd	[23, 25]	96.9 ± 14.6	Extractor
KBIR inspec	[23, 37]	76.4 ± 27.7	
BERT-base-uncased	[11]	44.7 ± 24.0	
BERT-base-uncased	[11]	43.3 ± 23.3	NER+CON R
XLM-RoBERTa-base Onconotes 5	[40, 18]	36.4 ± 23.4	NER+NUM
ELECTRA-base conll03	[8, 38]	39.9 ± 25.0	
BERT-large-cased conll03	[11, 38]	41.7 ± 24.9	
BERT-large-uncased conll03	[11, 38]	33.5 ± 23.3	NER
DistilBERT-base-uncased conll03	[39, 38]	37.7 ± 24.8	
RoBERTa-large conll03	[24, 38]	28.7 ± 21.1	
XLM-RoBERTa-large conll03	[14, 38]	26.0 ± 19.5	
BERT COCA-docusco	[11, 20]	99.6 ± 6.11	TokC
	1		

Methods (visualisations)

- Hierarchical clustering
 - Embedded with SpaCy
 - Average cosine distance
 - Identify similitude between extractor

- 2D Projection
 - Subsample data: reduce processing time and number of point
 - 6 embeddings:
 - SpaCy, GloVe, Fasttext, Word2Vec, BERT-large, GPT-2
 - 4 low-dimensional projection
 - Linear, spectral, t-SNE, UMAP
 - Show if themes can be detected in an unsupervised way

Results and Discussion

- Performance manly define by architecture and fine-tuned dataset
- Dataset not based on scientific texts
 - Conll03
- => Not suited for scientific articles

Results and Discussion

- Cosine similarity of embedding do not perform well to cluster themes
 - Even with 2D embedding algorithm that tend to overfit
- Exception with NER

Umap projection of Spacy using RoBERTalarge conllO3 (NER)

Results and Discussion

- Cosine similarity highly dependent of embedding space
- Important change with different embedding and algorithm

Conclusion

- LLM-based entity extraction seems not suited for concept-oriented bibliometrics in scientific article
- Work only on arXiv cs category
- Nouns extraction seems more robust

Maxime **Würsch** CYD Intern

Andrei **Kucharavy** Research associate UAS Dimitri **Percia David** Assistant professor UAS

Alain **Mermoud** Head of Technology Monitoring Team

EPFL

Thanks for your attention!

Questions?