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Abstract
Acquiring insights and understanding from historical pandemics is crucial for reducing the likelihood of their recurrence. The utilization
of knowledge graphs stands as an essential tool for researchers, with knowledge inference emerging as a prominent task within these
graphs to deduce previously unidentified connections between entities. This study endeavors to construct a knowledge graph centered on
pandemic research and to evaluate the efficacy of various mainstream methodologies in the context of biomedical association inference.
Our findings indicate that techniques for graph representation hold significant promise in executing these tasks and heterogeneous graph
representation techniques demonstrate high predicting accuracy. Nonetheless, the advancement in this area of research necessitates
more refined experimental designs and the adoption of more adaptive learning strategies.
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1. Introduction
Biomedical entity association inference is a long-term task
for scientific researchers and industry practitioners to under-
stand the relationships between biomedical entities and pro-
pose first-hand literature-based evidence for further investi-
gations [1, 2]. Severe Acute Respiratory Syndrome (SARS),
Middle East Respiratory Syndrome (MERS) and Coronavirus
Disease 2019 (COVID-19), the three notorious pandemics in
public health history, presented huge threats to human lives
and social stability [3, 4]. Uncovering knowledge inference
from the pandemic knowledge foundation encompassing
tremendous coronavirus-related research articles published
in human history may bring insights to uncover the evo-
lutionary mechanisms of coronavirus for reducing public
uncertainties towards and developing precautions for future
infectious disease crises [5, 6]. However, the complexity, het-
erogeneity and intricate associations of biomedical entities
present a challenge in exploring newly emerging knowl-
edge.

Knowledge graphs, which are extensively used to depict
intricate data relationships, serve as the foundation for ana-
lyzing and inferring associations [2, 6, 7, 8]. These graphs
represent biomedical entities such as genes, diseases, chemi-
cals, and drugs as nodes, with their relationships illustrated
as either directed or undirected edges, sometimes accompa-
nied by supplementary descriptive attributes. Leveraging
network analysis techniques, various methods have been
introduced to investigate patterns of association and predict
previously unknown relationships.

In this study, we developed a knowledge graph from schol-
arly articles on SARS, MERS, and COVID-19, comprising
9,142 nodes and 81,707 connections. We conducted a valida-
tion test to assess how well various mainstream techniques
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could predict relationships within this graph. By masking
10% of the connections of each type, we applied five different
methods to the masked graph to identify the hidden connec-
tions from an equal mix of randomly inserted non-existent
connections. The findings revealed the diverse effectiveness
of these methods in identifying the obscured connections,
with HetGNN proven as the most effective. Nonetheless, the
flexibility and applicability of different graph representation
methods across varied contexts need enhancement. This
research illustrates the application of multiple prominent
methods in deducing associations in knowledge graphs and
verifies the precision of these methods.

The following of this paper is organized as follows: We
introduced the pandemic knowledge graphs and examined
methods in the section Data and Method, followed by Ex-
perimental Settings and Results. We concluded the study
and anticipated some future directions in the section of
Discussion and Conclusions.

2. Data and Method
The integrative Biomedical Knowledge Hub (iBKH) is a
knowledge graph dataset that curates the associations of
11 categories of biomedical entities from 17 publicly avail-
able data sources [9]. Using the iBKH as the global dataset,
we searched scholarly articles across PubMed using search
strategies from [3] and cross-matched the search results to
iBKH. By extracting the nodes and edges relevant to papers
in the search results, we constructed a pandemic-specific
sub-graph of the iBKH dataset. The overall description of
sub-graphs relevant to each pandemic is given in Table 1.

The pandemic graph is denoted as 𝐺 = (𝑉,𝐸), and

𝑉 = {𝑉𝑑𝑖𝑠, 𝑉𝑑𝑔, 𝑉𝑔} (1)

𝐸 = {𝐸𝑑𝑔
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𝑔
𝑔} (2)

where 𝑉𝑑𝑖𝑠, 𝑉𝑑𝑔 , and 𝑉𝑔 respectively represent the node
set of diseases, drugs and genes. 𝐸𝑖

𝑗(𝑖, 𝑗 ∈ {𝑑𝑖𝑠, 𝑑𝑔, 𝑔})
denotes the edge set of associations between nodes of types
𝑖 and 𝑗. Entity association inference on this pandemic graph
aims to predict emerging associations between nodes in 𝑉
that have not yet appeared in 𝐸.
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Table 1
The basic information of pandemic knowledge graphs

SARS MERS COVID-19 Pandemic graph

#Paper 9,991 1,494 281,569 293,054
Drug 439 46 1,429 1,507

Disease 522 94 1,841 1,814
Gene 1,939 345 5,435 5,821

Drug-drug 145 13 1,626 1,678
Drug-disease 951 59 9,085 9,381
Drug-Gene 710 49 3,709 4,135

Disease-disease 148 26 928 939
Disease-gene 6,256 575 54,503 57,236
Gene-gene 2,199 347 7,461 8,338

There have been substantial efforts in the development
of association inference methodologies. In this study, we se-
lected the following representative methods to experiment:

• Random Walk with Restart (RWR) is a commonly
used method for inferring relationships within
graphs, particularly in the biomedical field. It mod-
els a random walking process that begins at node 𝑎
and calculates the likelihood of reaching node 𝑏 as
a measure of relevance between nodes 𝑎 and 𝑏. To
avoid the walk from becoming trapped in local areas,
it introduces a restart probability 𝑝, which allows
the walk to restart from node 𝑎 at each step, thereby
ensuring broader exploration of the graph.

• Resource allocation (RA) [10]: RA is a link predic-
tion algorithm that conceptualizes the graph as a
transportation network, viewing edges as channels
for resource diffusion. Under this model, the likeli-
hood of forming a link between any two nodes is
approximated by the total resources these nodes are
expected to receive through their shared neighbors.
This approach leverages the idea that the more re-
sources two nodes can exchange via their common
connections, the higher the probability they will
establish a direct link.

• Node2Vec [11]: Node2Vec is a scalable graph rep-
resentation technique that utilizes random walks
to learn low-dimensional vector representations of
nodes within a graph. It operates by optimizing an
objective that aims to preserve neighborhood rela-
tionships, ensuring that nodes with similar network
neighborhoods are close to each other in the vector
space.

• Heterogeneous graph neural networks (HetGNN)
[12]: HetGNN is a graph representation technique
designed to work with heterogeneous graphs, char-
acterized by their inclusion of various types of nodes,
each possessing diverse content attributes such as
text and images. It introduces a novel two-step in-
formation aggregation process aimed at effectively
learning from the information presented by neigh-
boring nodes, both of the same and different types.
This process allows HetGNN to capture the complex
structural and content heterogeneity of the graph,
enabling the model to generate more accurate and
meaningful representations of each node.

• Heterogeneous graph neural network with co-
contrastive learning (HeCo) [13]: HeCo is a self-
supervised learning technique designed for hetero-

geneous graph representation, which utilizes con-
trastive learning to derive node representations.

3. Experiment settings
The setup for the experiment is detailed in Figure 1. The
objective was to assess the efficacy of various algorithms
in predicting associations between biomedical entities. To
this end, a validation experiment was structured in the
following manner: From each category of edges, denoted
as 𝐸𝑖

𝑗 where 𝑖, 𝑗 belong to the set 𝑑𝑖𝑠, 𝑑𝑔, 𝑔 (represent-
ing disease, drug-gene, and gene respectively), 10% of
the edges were randomly selected and removed. The re-
sulting graph, with these edges removed, was labeled as
𝐺𝑚 = (𝑉,𝐸𝑚). The edges that were removed are rep-
resented by 𝑟𝐸 = 𝑟𝐸𝑗𝑖|𝑖, 𝑗 ∈ 𝑑𝑖𝑠, 𝑑𝑔, 𝑔, and these were
considered the ’true’ associations for the purposes of this
experiment. In addition to this, an equivalent number of
node pairs, which were not connected by edges in the orig-
inal graph 𝐺, were randomly chosen. These pairs are de-
noted by 𝑛𝐸 = 𝑛𝐸𝑗𝑖|𝑖, 𝑗 ∈ 𝑑𝑖𝑠, 𝑑𝑔, 𝑔, 𝑛𝐸𝑗𝑖 ∩ 𝐸𝑗𝑖 = ∅,
and they were defined as the negative sample set for this
study. This methodical approach enabled a balanced evalua-
tion, comparing the algorithms’ abilities to correctly infer
both existing and non-existing associations, thereby provid-
ing a comprehensive understanding of their performance in
the context of biomedical entity association inference.

Subsequently, each candidate algorithm was applied to
the modified graph 𝐺𝑚 to ascertain the likelihood of edge
formation between every pair of nodes within both 𝑟𝐸
and 𝑛𝐸. In the cases of the Random Walk with Restart
(RWR) and resource allocation algorithms, this procedure
involved computing the random walk probability and the
resource allocation score, respectively, for each node pair.
Conversely, for the three graph representation techniques,
the process entailed converting every node in the set 𝑉 into
embedding vectors. The representation for edges was then
determined through an average pooling strategy, which
involves aggregating the features of node embeddings to
form a single representation for each edge.

Following the generation of these probabilities or repre-
sentations, the combined dataset of 𝑟𝐸 and 𝑛𝐸 was divided,
with 80% allocated for training and the remaining 20% for
testing. This division was employed to train a logistic re-
gression classifier, the purpose of which was to predict the
likelihood of edge formation between node pairs in the test
set. The predictions made by the logistic regression model
were then used to calculate the Area Under the Curve (AUC)
metric for each method. By focusing exclusively on the test



Figure 1: The overall experiment design

Table 2
Performance comparison of selected algorithms

Method RWR RA Node2Vec HeCo HetGNN

𝐸𝑑𝑔
𝑑𝑔 0.5827 0.5830 0.7257 - 0.9566

𝐸𝑑𝑖𝑠
𝑑𝑔 0.7081 0.7651 0.8079 - 0.8315

𝐸𝑔
𝑑𝑔 0.8298 0.8741 0.9250 0.9120 0.9584

𝐸𝑑𝑖𝑠
𝑑𝑖𝑠 0.7585 0.7893 0.7086 - 0.8495

𝐸𝑔
𝑑𝑖𝑠 0.5327 0.5410 0.7802 0.7990 0.8001

𝐸𝑔
𝑔 0.7561 0.8110 0.8327 0.8530 0.9050

data, which comprised 20% of the total dataset, a standard-
ized evaluation criterion was established. This approach
allowed for a fair comparison of the five candidate methods,
with the AUC metric serving as a measure of each method’s
ability to accurately classify node pairs as either connected
or not connected, based on the generated classification prob-
abilities.

4. Results
Table 2 presents the AUC scores for the five candidate meth-
ods. It is noted that HeCo needs a metapath definition to
function, and a gene-based metapath was chosen for this
purpose. Consequently, HeCo’s evaluation was limited to
gene-related associations. It was found that HetGNN outper-
formed others in recovering the removed links.Compared
to RWR and RA, the three graph representation methods
demonstrated better accuracy in identifying connections.
Yet, their advantage is not definitive because they utilize a
supervised learning approach, requiring both positive and
negative samples to train a classifier, whereas RWR and
RA can be applied directly to the existing graph structure
without any pre-existing knowledge of it.

From the perspective of edge types, the analysis of gene-
drug and drug-drug connections showed superior outcomes.
Importantly, both RWR and RA displayed similar levels of
effectiveness as graph representation techniques in the task
of deducing disease-disease associations. This suggests that
inferring disease similarities might be distinct from other
tasks, meriting additional investigation.

Among the graph representation strategies, two methods
tailored for heterogeneous networks achieved superior AUC
scores over Node2Vec. This superiority results from their

training mechanisms being specifically designed for hetero-
geneous networks, as seen in this research and commonly
in biomedical entity graphs. These methods incorporate
the significance of node types into the computation, em-
ploying either type-specific or metapath-based aggregation
strategies for information. While this heterogeneity-focused
approach is beneficial, it limits the model’s applicability
and increases the cost of adaptation. Changes in the het-
erogeneous graph’s structure necessitate adjustments to
HetGNN’s data inputs and HeCo’s metapaths, along with
significant methodological revisions. Additionally, HeCo’s
performance is influenced by the setting of a positive sample
threshold and the definition of metapaths, which vary per
case and affects the outcome significantly. Node2Vec, in
contrast, offers a more generalized solution applicable to a
wide range of graph types.

In conclusion, while heterogeneous graph representation
methods hold promise for deducing relationships within
pandemic knowledge graphs, enhancing their flexibility and
general applicability remains a challenge.

5. Discussion and Conclusions
This study explores the performance of different methods of
association inference and provides insights into the poten-
tial of graph representation methods. Despite some existing
entity-relationship summarization tools like PubTator 3 [14],
graph representation methods still hold the potential to infer
more accurate biomedical associations but need improve-
ment on adaptability and generalisability. Future work will
modify the inference framework and perform real-world
association inference on the built pandemic graph.

We anticipated the following future directions align-
ing with some limitations of the current study: 1) This
study offered some preliminary understandings on selected
baselines of graph representation learning in inferring the
pandemic knowledge graph, but further customized re-
development based on the unique features of the pandemic
knowledge graph to enhance its performance might be ben-
eficial. 2) Investigating the scientific community of a pan-
demic and its collaborative patterns will bring insights to
analyze the societal context of a pandemic crisis and provide
evidence-based decision support in terms of science policy,
public health, and public administration.
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